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Research Background 

Semantic segmentation is a critical task in computer vision, and its special 

application to remote sensing is RSI interpretation, such as integrated land use and 

land cover mapping, town change detection, urban functional areas, building 

footprints, impervious surfaces, and water body extraction. 
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Researcher List of research contents

Paszke, Adam, et al.（2016）Enet
Propose a novel deep neural network architecture named ENet (efficient neural 

network), created specifically for tasks requiring low latency operation.

Li, Gen, et al.（2019）Dabnet

Propose a novel Depth-wise Asymmetric Bottleneck (DAB) module to address 

this dilemma, which efficiently adopts depth-wise asymmetric convolution and 

dilated convolution to build a bottleneck structure.

Lo, Shao-Yuan, et al. （2019）
EDANet

Propose a novel convolutional network named Efficient Dense modules with 

Asymmetric convolution (EDANet), which employs an asymmetric convolution 

structure and incorporates dilated convolution and dense connectivity to 

achieve high efficiency at low computational cost and model size.

Romera, Eduardo, et al. （2017）
Eernet

Propose a deep architecture that is able to run in real time while providing 

accurate semantic segmentation. The core of our architecture is a novel layer 

that uses residual connections and factorized convolutions in order to remain 

efficient while retaining remarkable accuracy.

Fan, Mingyuan, et al. （2021）
STDC

Propose a novel and efficient structure named Short-Term Dense Concatenate 

network (STDC network) by removing structure redundancy.

Efficient Semantic Segmentation

“Efficient semantic segmentation can improve the processing efficiency of VHR images”

Research Background 
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Challenges and Existing problems 

（a）RS Big Data：

➢ High demands on the efficiency of model

operation；

➢ Hard to deal with very high-resolution

(VHR) images;

（b）Semantic Segmentation：

➢ Lack of details in information modeling ;

➢ Inefficient processing;

➢ Difficulties for balancing model

complexity (inference speed) and

segmentation accuracy;

It is urgent to establish a efficient semantic segmentation model with high 

inference speed and accuracy for VHR images.

Research Background 
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1) Aiming at the lack of spatial details in efficient semantic segmentation information

modeling on VHR, the improved multiscale spatial detail (MSD) deep supervision

module is proposed to extract rich detail and texture information, which is

activated only during the model training phase without inference speed sacrifice.

Research objectives

2) Aiming at the lack of semantic details in efficient semantic segmentation

information modeling on VHR, the hierarchical semantic enhancement (HSE) deep

supervision module is proposed for enhancing the capacity to discern the category

distributions, which is activated only during the model training phase without

inference speed sacrifice.

3) Aiming at the difficulties for efficient semantic segmentation in long-range

modeling, a simple embedding attention module (EAM) is proposed to improve the

extraction capacity of global information with optimizing from quadratic

complexity to linear complexity.

Research Background 
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Framework
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1. CNN Lightweight Backbone

2. Embedding Attention (EAM) Module 

3. Deep supervision Module MSD and HSE

Research Content and Technical Route
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Framework

◆ Extraction of multilevel convolutional features by a designed low channel 

capacity, fast downsampling CNN network;

◆ Feature recalibration of multi-level convolutional features using simple 

embedding attention module (EAM);

◆ Spatial detail enhancement of multi-scale convolutional features using a 

improved multiscale detail enhancement module (MSD) with loss function 

based on selective kernel;

◆ Semantic detail enhancement of multiscale convolutional features using a 

hierarchical semantic enhancement module (HSE) with loss function based 

on semantic frequency distribution;

◆ Semantic segmentation of the enhanced features based on the classifier.

Research Content and Technical Route
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DSANet Backbone

Backbone Parameters

DSANet is an asymmetric, U-shaped, single branch network with an encoder for the 

contracting path and a decoder for the expansion path.

(1) the spatial path (SP) for extracting spatial information, the 

attention refinement module (ARM) for refining semantic 

features, and the feature fusion module (FFM) for feature 

interaction account for more than 30% of the model inference 

speed; 

(2) performing feature operations at the second-to-last scale 

(ARM16) is extremely time-consuming and unsatisfactory

Observing the inference time spent by a typical two branch network BiSeNet reveals: 

✓ Faster and deeper downsampling;

✓ Reducing the channel capacity of 

deeper layers

Research Content and Technical Route
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Embedding Attention Module (EAM) 

First, given feature map 𝑭 ∈ 𝑅𝐶×𝐻×𝑊;

Reshape 𝑭 to a sequence 𝑿 = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵 ,

where 𝒙𝒊 ∈ 𝑅𝐶 is the feature vector of element

𝑁;

Perform linear transformations on 𝑿 to obtain

query matrix 𝑸 ∈ 𝑅𝑁×𝑑𝑘:

𝑸 = 𝑊𝑄 𝑿

Memoried key matrix 𝑲 ∈ 𝑅𝑁×𝑑𝑘 , and value

matrix 𝑽 ∈ 𝑅𝑁×𝑑𝑣 are pre-generated, where

𝑑𝑣 = 𝑑𝑘 , and are retained until subsequent

calculations.

Calculate the cosine similarity between the 𝑖-th

element and the 𝑗-th element as (𝑞𝑖
𝑇𝑘𝑗). The

attention score ෡𝑨𝒊,𝒋 of matrix 𝑸 and 𝑲 is defined

as:
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exp(𝑨𝒊,𝒋)

σ𝑘
𝐸 exp(𝑨𝒌,𝒋)

L1 normalization is specifically applied

following softmax activation.

෡𝑨𝒊,𝒋 = 𝑁𝑜𝑟𝑚𝐿1
෩𝑨𝒊,𝒋 =
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σ
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Obtain 𝑿𝒔𝒂 by multiplying 𝑽 with ෡𝑨:

𝑿𝒔𝒂 = ෡𝑨𝑽

Research Content and Technical Route
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Multiscale Detail Enhancement  (MSD) 

First, given feature map 𝑭𝒊𝒏 ∈ 𝑅𝐶×𝐻×𝑊 of shallow

layer;

Obtain selected feature maps 𝑭𝑺 ∈ 𝑅𝒓𝐶×𝐻×𝑊 through

a selective kernel, where 𝒓 is selective ratio;

Obtain 𝑭𝑺 ∈ 𝑅𝐻×𝑊 with channel dimension 1 by a

3×3 convolution and a 1×1 convolution;

Set the discrete Laplace operator 𝑶 as edge extractor:

Use binary cross-entropy (BCE) loss with

category proportion-insensitive Dice loss

to evaluate the similarity of selected

feature maps 𝑭𝑺 and pyramid detail map 𝑷.

𝑶 =
−1 −1 −1
−1 8 −1
−1 −1 −1

Create multiscale detail maps 𝑫𝟎 ∈ 𝑅𝐻×𝑊 , 𝑫𝟐 ∈

𝑅𝐻×𝑊 , and 𝑫𝟒 ∈ 𝑅𝐻×𝑊 performed by Laplace

convolution operators with varying strides from the

label map;

Obtain pyramid detail map 𝑷 ∈ 𝑅𝐻×𝑊 by summing

multiscale details maps:

𝑃 = 𝐷0 + 𝐷2 + 𝐷4

CBR Conv3x3+BN+ReLU Element-wise Sum MSD Loss
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Research Content and Technical Route
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Hierarchical Semantic Enhancement   (HSE) 

First, given label map 𝑦 ∈ 𝑅𝐻×𝑊;

1. Set hierarchical semantic boundary.

Assume that 𝑵 boundary levels and the

boundary level of 𝒏 slice the label map in 2𝒏

patches along the length and width, respectively.

The label patches are set as 𝑦𝒏 ∈ {𝑦1, 𝑦2, … , 𝑦𝑵},

where 𝑦𝒏 = {𝑦𝒏
(𝑗)
}𝑗=1
22𝒏 is the set of label patches

in level 𝒏 and 𝑦𝒏
(𝑗)

∈ 𝑅
𝐻

2𝑛
×
𝑊

2𝑛;

2. Calculate the local frequency distribution.

The category distribution 𝑑𝒏
(𝑗)

is calculated

separately for each label patch 𝑦𝒏
(𝑗)

, where 𝑗 is

the sequence number of the label patch set;

3. Aggregate the global distribution vector.

The label patches at boundary level 𝒏 are

concatenated to generate the global 

frequency distribution vector ො𝑣𝒏. The HSE 

vector of label map ො𝑣 = { ො𝑣𝒏}𝒏=0
𝑵 ;

4. Repeat step 1-3 for feature map 𝑭 to 

obtain global frequency distribution vector 

𝑣𝒏 and its HSE vector 𝑣;

5. Use binary cross-entropy (BCE) loss to 

evaluate the similarity of ො𝑣 and 𝑣.

Research Content and Technical Route
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⚫ Potsdam Dataset

ISPRS Website

5 cm spatial resolution

Urban, 38 Patches, 6 Categories

nDSMRGBIR DSM Label

nDSMRGBIR DSM Label

⚫ Vaihingen Dataset

ISPRS Website

9 cm spatial resolution

Village, 33 Patches, 6 Categories

Research Content and Technical Route
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Experiment Results

Experimental Parameter Setting

⚫ SGD is chosen as the optimizer, the total number of training times 𝒊𝒕𝒆𝒓𝟎 is 80,000,

the initial learning rate 𝒍𝒓𝟎 is 0.001, and the learning rate 𝒍𝒓 is updated using the

"poly" training strategy, 𝒍𝒓 = 𝒍𝒓𝟎 𝟏 −
𝒊𝒕𝒆𝒓

𝒊𝒕𝒆𝒓𝟎

𝒑𝒐𝒘𝒆𝒓

, where 𝒑𝒐𝒘𝒆𝒓 is set to 0.9, the

batch size is 16.

Experiment Settings

Data Preprocessing and Augmentation
Data Augmentation

⚫ Multiscale Resizing: A scale number is randomly 

selected from 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0 

for the height and width resizing.；

⚫ Random Cropping: Randomly select a 512×512 

pixel block of data and crop it；

⚫ Random Flipping: Includes vertical flip and 

horizontal flip；

⚫ Photometric Distortion: Randomly adjust the 

brightness, contrast, saturation and hue levels of 

the images；

⚫ Normalization: Adjust the data distribution to 

conform to a normal distribution。

Data Preprocessing

⚫ Data Cropping：Crop the raw 

images to a size of 500×500 pixels 

with a stride equal to half the size of 

the cropped image；

⚫ Discard images with lengths or 

widths that are less than a quarter of 

the cropped image size；
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Ablation Experiment

To quantify the role of the EAM, MSD and HSE modules, ablation

experiments were conducted on the ISPRS Potsdam dataset.

DSANet64 obtained 78.17%, 77.96 % and 77.33% of mIoUs using EAM, MSD and HSE

modules, respectively, which are 1.12%, 0.91% and 0.28% higher compared to DSANet64

backbone network, demonstrating the effectiveness of DSANet.

Method EAM MSD HSE mIoU (%) mF1 (%)

DSANet64

77.05 86.90

√ 78.17 87.60

√ 77.96 87.48

√ 77.33 87.39

√ √ 79.06 88.17

√ √ √ 79.20 88.25

Experiment Results
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In order to qualitatively understand the role of the EAM, MSD and HSE

modules through visual representation, ablation experiments were conducted

on multiple different features selected from the ISPRS Potsdam dataset.

DSANet64 can obtain better segmentation results than the backbone network using

EAM, MSD and HSE modules, respectively, and on balance, DSANet64 is effective.

Ablation Experiment

Experiment Results
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Comparison-Potsdam

⚫ DSANet32 and DSANet64 achieve better and suboptimal results for both small

and large model comparisons, with mIoU of 77.84% and 79.20%, respectively.

⚫ The segmentation results of most other efficient segmentation networks are

significantly lower than DSANet, which also validates the effectiveness of

DSANet.

Experiment Results
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DSANet64.

(a) IRRG image, (b) GT, (c) 

FPENet, (d) FSSNet, (e) CGNet, (f) 

ContextNet, (g) Fast-SCNN, (h) 

ERFNet, (i) STDC1, (j) LinkNet, 

(k) ICNet34, (l) BiSeNet V1, (m) 

SFNet, (n)DDRNet23, (o) 

DSANet64.

Comparison-Potsdam

Experiment Results
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⚫ DSANet32 and DSANet64 achieve optimal results for both small and large

model comparisons, with mIoU of 71.31% and 72.26%, respectively.

⚫ The segmentation results of other efficient segmentation networks are

significantly lower than DSANet, which again validates the effectiveness of

DSANet.

Comparison-Vaihingen

Experiment Results
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⚫ DSANet32 achieves the optimal inference speed of 8.78 FPS on large images

and DSANet64 achieves the optimal inference speed of 470.07 FPS on small

images, in addition, DSANet has better inference speed on data of different

scales.

Inference Speed

Experiment Results
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Conclusion

⚫ Lightweight DSANet is proposed for semantic segmentation of remote sensing

images. DSANet better balances the contradiction between the operation efficiency

and accuracy；

⚫ Using multiscale spatial detail enhancement and hierarchical semantic

enhancement modules to effectively enhance the model's ability to extract detailed

and semantic information without sacrificing inference speed；

⚫ A simple embedding attention module (EAM) with linear complexity performs

long-range relationship modeling；

⚫ DSANet still has room for optimization in terms of operational efficiency and

accuracy, such as the use of knowledge distillation, structural re-parameterization

and model pruning.

Experiment Results
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Research Background 

Pansharpening is a technique used in remote sensing and image processing to 

obtain the high-spatial-resolution (HR) multispectral (MS) images by fusing HR 

panchromatic (PAN) images and lower-spatial-resolution (LR) MS images.

𝐻𝑅𝑀𝑆 = 𝐹𝜃(𝐿𝑅𝑀𝑆, 𝑃𝐴𝑁)
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Researcher List of research contents

Laben, and Bernard.（2000）
CS. Gram-Schmidt

Perform a Gram-Schmidt transformation on the simulated lower spatial 

resolution panchromatic image and the plurality of lower spatial resolution 

spectral band images.

Shahdoosti, and Hassan.（2016）
CS. PCA

Propose a new consistent data transformation method in spatial domain, this 

paper applies the PCA transform to the spatial information of the neighboring 

pixels.

Otazu, González-Audícana, et al. 

（2005）MRA. AWLP

Present a technique which takes into account the physical electromagnetic 

spectrum responses of sensors during the fusion process, which produces 

images closer to the image obtained by the ideal sensor than those obtained by 

usual wavelet-based image fusion methods. 

Aiazzi, Alparone, et al. （2006）
MRA. MTF-GLP

A model of the modulation transfer functions (MTF) of the multispectral 

scanner is exploited to design the GLP reduction filter.

Ballester, Vicent, et al. （2006）
VO. P+XS

Based on the assumption that, to a large extent, the geometry of the spectral 

channels is contained in the topographic map of its panchromatic image. 

Li, and Yang. (2010)

VO. Sparse Representation

Address the remote sensing image pan-sharpening problem from the 

perspective of compressed sensing theory which ensures that with the sparsity 

regularization, a compressible signal can be correctly recovered from the global 

linear sampled data. 

Traditional Pansharpening

Research Background 
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Researcher List of research contents

Masi, Cozzolino, et al.（2016）
PNN

A new pansharpening method is proposed, based on convolutional neural 

networks. We adapt a simple and effective three-layer architecture recently 

proposed for super-resolution to the pansharpening problem. 

Yang, Fu, et al.（2017）PanNet

Propose a deep network architecture for the pan-sharpening problem called 

PanNet. We incorporate domain-specific knowledge to design our PanNet

architecture by focusing on the two aims of the pan-sharpening problem: 

spectral and spatial preservation.

Wei, Yuan, et al. （2017）
DRPNN

The concept of residual learning is introduced to form a very deep 

convolutional neural network to make the full use of the high nonlinearity of 

the deep learning models.

Liu, Liu, et al. （2020）TFNet

Propose a Two-stream Fusion Network (TFNet) to address the problem of pan-

sharpening. …the proposed TFNet aims to fuse PAN and MS images in feature 

domain and reconstruct the pan-sharpened image from the fused features.

Meng, Wang, et al. （2022）
Vision Transformer

Propose an improved and advanced purely transformer-based model for 

pansharpening.

Ma, Yu, et al. (2020)

PanGan

Propose a novel unsupervised framework for pan-sharpening based on a 

generative adversarial network, termed as Pan-GAN, which does not rely on 

the so-called ground-truth during network training.

DL-based Pansharpening

Research Background 
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Existing Problems 

（a）Component Substitution (CS)-based Method

➢ High spatial quality, Low spectral fidelity

（b）Multiresolution Analysis (MRA)-based Method

➢ High spectral fidelity, Low spatial quality

（c）Variational Optimization (VO)-based Method

➢ Computationally costly

➢ Underlying assumptions not always match the fusion situation

（d）Deep Learning (DL)-based Method：

➢ CNN: Tend to smooth features

➢ Transformer: Need large dataset for model training

➢ GAN: Unstable training

It is urgent to establish a new pansharpening method to 

avoid above  problems.

Limited by strong 

physical assumption!

Research Background 
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1) PanDiff is a generative model based on the DDPM which is first designed for pansharpening;

2) PanDiff changes the learning objective of the traditional fusion networks. It decomposes the

complex fusion process of PAN and LRMS images into a multi-step Markov process, and

actually learns the data distribution of the difference map (DM) of HRMS and interpolated

MS (IMS), rather than the spatial and spectral information of HRMS；

3) PanDiff no longer treats the input PAN and MS as the object of feature extraction, it injects

the PAN and MS images intercalibrated by a modal intercalibration module (MIM) as

conditions to guide the U-Net to learn the data distribution of the DM of HRMS and IMS.

Contributions

Content and Technical Route 

Solution

A novel denoising diffusion probabilistic model (DDPM)-based pansharpening model

(PanDiff) is proposed from a fresh perspective to avoid the inherent flaws of the

traditional and DL-based approaches.
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Framework

PanDiff: 

1. DDPM: Forward Step

2. DDPM: Reverse Step

3. Condition Injection Branch

4. Modal Intercalibration

Content and Technical Route 

Notations

1. 𝒒(⋅∣⋅) : Forward (Diffusion) step

2. 𝒑𝜽(⋅∣⋅) : Reverse (Denoised) step with network 𝜽

3. 𝒕 : Discrete timesteps t on the range of [0, T]

4. 𝒙𝟎 : Prior distribution of data 𝑮𝑻 − 𝑰𝑴𝑺

5. 𝒙𝒕 :  Diffused data (latent state) at step t

6. 𝒙𝑻 : Random noise after diffusion
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DDPM: Forward Process

Content and Technical Route 

Given prior data distribution 𝒒(𝒙𝟎);

Continuously adding Gaussian noise to latent states 𝑥𝑡 on Markov chain:

𝑞 )𝑥𝑡 𝑥𝑡−1 = 𝑁 ቁቀ𝑥𝑡; 1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡𝐼 1

where 𝛽𝑡 represents the variance of the added Gaussian noise in the transition process

from 𝑥𝑡−1 to 𝑥𝑡, and all the variance schedule 𝛽1, … , 𝛽𝑇 ∈ 0, 1 ;

Obtain an approximate standard normal distribution 𝒙𝑻 ∼ 𝑁(0, 𝐼) after continuously

Gaussian transition )𝑞 𝑥𝑡 𝑥𝑡−1 ;

The forward diffusion process is given by the approximate posterior:

𝑞 )𝑥1: 𝑇 𝑥0 =ෑ

𝑡=1

𝑇

𝑞 )𝑥𝑡 𝑥𝑡−1 2

The latent state 𝒙𝒕 at any arbitrary timestep 𝒕 can be derived based on 𝒙𝟎 and 𝜷𝒕:

𝑞 )𝑥𝑡 𝑥0 = 𝑁 ൯൫𝑥𝑡; ത𝛼𝑡𝑥0, 1 − ത𝛼𝑡𝐼 3

ത𝛼𝑡 = ෑ

𝑖=1

𝑡

൯൫1 − 𝛽𝑖 4
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Content and Technical Route 

Purpose: Recreate a sample in the specific data distribution 𝒒(𝒙𝟎) from sampling

Gaussian noise 𝒙𝒕.

)𝑞 𝑥𝑡 𝑥𝑡−1 → 𝑞 𝑥𝑡−1 𝑥𝑡 ) Hard to Estimate!

Solution: use a U-Net 𝜃 to approximate these conditional probabilities by fitting the mean

and variance.

The reverse Gaussian transition:

𝑝𝜃 )𝑥𝑡−1 𝑥𝑡 = 𝑁 ൯൫𝑥𝑡−1; 𝜇𝜃 ൯൫𝑥𝑡 , 𝑡 , Σ𝜃 )(𝑥𝑡 , 𝑡 5

Substituting (1) and (3) into the conditional probability 𝑞 )𝑥𝑡−1 𝑥𝑡, 𝑥0 ∼

𝑁 ൯൫𝑥𝑡−1; ෤𝜇𝑡 ൯൫𝑥𝑡, 𝑥0 , ෨𝛽𝑡𝐼 , the mean ෤𝜇𝑡 ൯൫𝑥𝑡, 𝑥0 and variance ෨𝛽𝑡 can be parameterized with

Bayes’ rule:

෤𝜇𝑡 ൯൫𝑥𝑡 , 𝑥0 =
1

𝛼𝑡
𝑥𝑡 −

1 − 𝛼𝑡

1 − ത𝛼𝑡
𝜖𝑡 6

෨𝛽𝑡 =
1 − ത𝛼𝑡−1
1 − ത𝛼𝑡

𝛽𝑡 7

𝛼𝑡 = 1 − 𝛽𝑡

DDPM: Reverse Process
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Content and Technical Route 

Optimization Objective: Recreate a sampling distribution 𝑞( ෤𝑥0) close to the prior data

distribution 𝒒(𝒙𝟎), which can be achieved by minimizing the negative log-likelihood

(NLL) and optimized by using the variational lower bound:

DDPM: Optimization

8

where 𝐿𝑇 and 𝐿0 are fixed values after the data distribution 𝑥0 and the noise scheme 𝛽 are

determined. The parameterized 𝐿𝑡−1 can be calculated by substituting the mean and

variance of the 𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0) and 𝑝𝜃 )𝑥𝑡−1 𝑥𝑡 :

𝐿𝑡−1 = 𝐸𝑥0,𝜖
1

2𝜎2
෤𝜇𝑡 ൯൫𝑥𝑡, 𝑥0 − 𝜇𝜃 𝑥𝑡 , 𝑡

2
9
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Model Design

Content and Technical Route 

Questions:

◆How to destroy HRMS with rich spatial and spectral information into

approximate Gaussian noise 𝑥𝑇 in limited timesteps?

◆How to guide the random Gaussian noise 𝑥𝑇 simulate the process of

HRMS reconstruction with high uncertainty?

Difference Map Condition Injection

Spectral & Spatial Modal Calibration
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Difference Map

Content and Technical Route 

Two Considerations:

◆ Effectively alleviate the difficulty of the work that converting the HRMS into a Gaussian

noise and reconstructing it by reversion in a limited number of timesteps.

◆ The fusion objective of PanDiff is more clearly defined, which undoubtedly leads to better

performance of the model.

HRMS

𝐻𝑅𝑀𝑆 = 𝐹𝜃(𝐿𝑅𝑀𝑆, 𝑃𝐴𝑁)

Δ𝑀𝑆 = 𝐹𝜃(𝐿𝑅𝑀𝑆, 𝑃𝐴𝑁)
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Condition Injection

Content and Technical Route 

Using PAN and LRMS images as condition injections to control the reverse process

of reconstructing:

𝑝𝜃 ൯൫𝑥0:𝑇 = 𝑝 ൯൫𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃 )𝑥𝑡−1 𝑥𝑡 , 𝑐𝑜𝑛𝑑 10

𝑐𝑜𝑛𝑑 = Φ 𝑃𝐴𝑁, 𝐿𝑅𝑀𝑆 11

where Φ(⋅) is the encoder branch for processing PAN and LRMS images as the

injected condition

Encoder
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MIM

Content and Technical Route 

Significant modal differences exist between PAN and LRMS images, allowing PAN

and LRMS images to guide the modeling of 𝑞 𝑥𝑡−1 𝑥𝑡 ) in neural networks by

focusing on various aspects.

➢ MIM-Spectral

1. Averaging & Max global

pooling via channel dimension

2. Multi layer perceptron (MLP)

3. Multiply the weights

➢ MIM-Spatial

1. Averaging & Max global

pooling in channel dimension

2. Conv1×1

3. MLP

4. Multiply the weights
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Algorithms

Content and Technical Route 

PanDiff Training

PanDiff Sampling
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Datasets

The PanCollection dataset containing data from four satellites (GaoFen-2,

QuickBird, WorldView-3, and WorldView-2) is utilized to evaluate PanDiff

with other state-of-the-art methods fairly and comprehensively.

Experiment Results 
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Experiment Details

CS-based Methods: BT-H, and BDSD-PC

MRA-based Methods: MTF-GLP-FS, and MTF-GLP-HPM-R

DL-based Methods:

➢ CNN: PNN, PanNet, DRPNN, MSDCNN, DiCNN, SSconv, and TDNet

➢ GAN: PSGAN, and MDSSC-GAN

Benchmarks

Evaluation Metrics

Reduced Resolution: PSNR, SSIM, SAM, ERGAS, and SCC

Full Resolution: 𝑫𝑺, 𝑫𝒍𝒂𝒎𝒃𝒅𝒂, QNR and HQNR

Experiment Results 
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⚫ AdamW is chosen as the optimizer, the total number of training times 𝒊𝒕𝒆𝒓𝟎 is

320,000, the initial learning rate 𝒍𝒓𝟎 is 0.0001, and the learning rate 𝒍𝒓 is updated

using the MultiStep learning rate scheduler, the batch size is 384.

Experiment Settings

Data Augmentation

⚫ Random Flipping: Includes vertical flip 

and horizontal flip；

⚫ Random Rotation: Includes 90°, 180,

and 270 rotations.

Data Preprocessing

⚫ Data Normalization: both the input 

and output of DDPM need to be 

approximated as standard Gaussian 

distributions.

Experiment Results 

𝑑′ = 2 ×
𝑑

2𝛾
− 1 12

Experimental Parameter Setting

Data Preprocessing and Augmentation
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Reduced Resolution

Experiment Results 

GF-2
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Reduced Resolution

Experiment Results 

QuickBird
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Full Resolution

Experiment Results 

GF-2
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Full Resolution

Experiment Results 

QuickBird
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Full Resolution

Experiment Results 

WorldView-3
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Generalization Test

Experiment Results 

Using WorldView-2 images to perform cross-sensor, cross-resolution

generalization experiments on the model trained with WorldView-3 data.

PanDiff shows high robustness with excellent spectral retention and spatial

enhancement capabilities.
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Ablation Study

Experiment Results 

In the reduced resolution experiments, the results are as expected; because more data

information must be reconstructed, not using the DM decreases performance by 0.93, 0.0028,

0.0922, and 0.0589 for PSNR, SSIM, SAM, and ERGAS, respectively. However, omitting the

DM sharply degrades the model’s capacity to retain spectral information for full-resolution

images, although the difference in spatial detail retention ability is insignificant.

Effectiveness of Difference Map

Effectiveness of MIM

PanDiff without MIM-Spectral has a considerable reduction in the spectral metrics

SAM and 𝑫𝝀, 0.0698 and 0.0081, respectively; PanDiff with missing MIM-Spatial has a

reduction in the spatial structure metrics SSIM and 𝑫𝑺 , 0.0042 and 0.0071, respectively.
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Conclusion

Experiment Results 

⚫ PanDiff is a generative model based on the DDPM which is first designed for

pansharpening；

⚫ PanDiff changes the learning objective of the traditional fusion networks. It

decomposes the complex fusion process of PAN and LRMS images into a multi-step

Markov process, and actually learns the data distribution of the difference map

(DM) of HRMS and interpolated MS (IMS), rather than the spatial and spectral

information of HRMS ；

⚫ PanDiff no longer treats the input PAN and MS as the object of feature extraction,

it injects the PAN and MS images intercalibrated by a modal intercalibration

module (MIM) as conditions to guide the U-Net to learn the data distribution of the

DM of HRMS and IMS ；

⚫ Comparisons between PanDiff with other state-of-the-art methods on GaoFen-2,

QuickBird, and WorldView-3 data show the significant effectiveness and superiority

of PanDiff.



Thanks！


