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Research Background

Semantic segmentation is a critical task in computer vision, and its special
application to remote sensing is RSl interpretation, such as integrated land use and

land cover mapping, town change detection, urban functional areas, building

footprints, impervious surfaces, and water body extraction.
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Research Background

Efficient Semantic Segmentation

“Efficient semantic segmentation can improve the processing efficiency of VHR images”

Researcher

List of research contents

Paszke, Adam, et al. (2016) Enet

Li, Gen, et al. (2019) Dabnet

Lo, Shao-Yuan, etal. (2019)
EDANet

Romera, Eduardo, et al. (2017)
Eernet

Fan, Mingyuan, etal. (2021)
STDC

Propose a novel deep neural network architecture named ENet (efficient neural
network), created specifically for tasks requiring low latency operation.

Propose a novel Depth-wise Asymmetric Bottleneck (DAB) module to address
this dilemma, which efficiently adopts depth-wise asymmetric convolution and
dilated convolution to build a bottleneck structure.

Propose a novel convolutional network named Efficient Dense modules with
Asymmetric convolution (EDANet), which employs an asymmetric convolution
structure and incorporates dilated convolution and dense connectivity to
achieve high efficiency at low computational cost and model size.

Propose a deep architecture that is able to run in real time while providing
accurate semantic segmentation. The core of our architecture is a novel layer
that uses residual connections and factorized convolutions in order to remain
efficient while retaining remarkable accuracy.

Propose a novel and efficient structure named Short-Term Dense Concatenate
network (STDC network) by removing structure redundancy.




Research Background

Challenges and Existing problems

(a) RS Big Data:

» High demands on the efficiency of model

Y pooam 0.

operation;
» Hard to deal with very high-resolution
(VHR) images;
(b) Semantic Segmentation:

» Lack of details in information modeling ;

> Inefficient processing;

» Difficulties  for  balancing model
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Is urgent to establish a efficient semantic segmentation model with high
inference speed and accuracy for VHR images. 4
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Research Background

Research objectives

1) Aiming at the lack of spatial details in efficient semantic segmentation information
modeling on VHR, the improved multiscale spatial detail (MSD) deep supervision
module is proposed to extract rich detail and texture information, which is

activated only during the model training phase without inference speed sacrifice.
2) Aiming at the lack of semantic details in efficient semantic segmentation

information modeling on VHR, the hierarchical semantic enhancement (HSE) deep
supervision module is proposed for enhancing the capacity to discern the category
distributions, which is activated only during the model training phase without ;
inference speed sacrifice. ;
|

3) Aiming at the difficulties for efficient semantic segmentation
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Research Content and Technical Route

Framework
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DSANet:

1. CNN Lightweight Backbone

2. Embedding Attention (EAM) Module

3. Deep supervision Module MSD and HSE



Research Content and Technical Route

Framework

€ Extraction of multilevel convolutional features by a designed low channel

capacity, fast downsampling CNN network;

€ Feature recalibration of multi-level convolutional features using simple

embedding attention module (EAM);

€ Spatial detail enhancement of multi-scale convolutional features using a
Improved multiscale detail enhancement module (MSD) with loss function

based on selective kernel;

€ Semantic detail enhancement of multiscale convolutional features using a
hierarchical semantic enhancement module (HSE) with loss function based

on semantic frequency distribution;

€ Semantic segmentation of the enhanced features based on the classifier.



Research Content and Technical Route

DSANet Backbone

DSANet is an asymmetric, U-shaped, single branch network with an encoder for the
contracting path and a decoder for the expansion path.

Observing the inference time spent by a typical two branch network BiSeNet reveals:

(1) the spatial path (SP) for extracting spatial information, the

attention refinement module (ARM) for refining semantic Modul Parins 10 FOPS(G) [forenceTime e
features, and the feature fusion module (FFM) for feature AIS;SZ ggii ?ggg ggi
: : o : . . |
interaction account for more than 30% of the model inference ARMIE e 208 209
speed; FRM 0984 183 456

(2) performing feature operations at the second-to-last scale Al 813 1443 aw

(ARM16) is extremely time-consuming and unsatisfactory

¥

Stages Output Size KSize S DSANet32 DSANet6d
R c R C
- B Image 512 x 512 3 3
v’ Faster and deeper downsampling; oo Beime s 1 1 m 1 g
X
Stage 1 128 x 128 3x3 1,1 2 32 2 64
. . Stage 2 64 x 64 3x3 21 1 32 1 64
64 x 64 1,1 1 1
v" Reducing the channel capacity of PR -S.L- S S S
Stage 4 32 x32 3x3 21 1 64 1 128
32 x 32 1,1 1 1
deeper Iaye IS Stage 5 16 x 16 3x3 2 1 64 1 128
Stageé 8x8 3x3 2 1 128 1 256
FLOPs 2.09G 7.46G
Params 1.14M 4.58M

Backbone Parameters



Research Content and Technical Route

Embedding Attention Module (EAM)

First, given feature map F € R¢*H>W:

Reshape F to a sequence X = {xq1, X9, ..., Xx},
where x; € R¢ is the feature vector of element
N;

Perform linear transformations on X to obtain
query matrix Q € RV*dk:

Q= WQ (X)
Memoried key matrix K € RV>*%  and value
matrix V € RV*% are pre-generated, where

d, = dj, and are retained until subsequent
calculations.

exp(4;;)

% exp(Ayj)
L1 normalization is specifically applied
following softmax activation.

~

Ai,j
Yok Ay
Obtain X, by multiplying V with A:

Zii’j = softmax(Q,K); ; =

Calculate the cosine similarity between the i-th Ayj = Normy,(4;)) =

element and the j-th element as (ql-Tkj). The

attention score A4; ; of matrix @ and K is defined

X, = AV
as.



Research Content and Technical Route

Multiscale Detail Enhancement (MSD)

First, given feature map F;, € R“*H*W of shallow
layer;

Ratio Selective

Kernel

CBR —— Convixl

,

Obtain selected feature maps Fg € RT¢*H*W through
a selective kernel, where r is selective ratio;

Selected

Feature maps
P Features

Obtain Fg € R™*W with channel dimension 1 by a
3%x3 convolution and a 1x1 convolution;

Laplacian

< y T, W / Conv S1
RN 4

A

Set the discrete Laplace operator O as edge extractor:

Laplacian
Conv S2

e ‘Q“\
- 1 - 1 - 1 % o !f; \ Laplacian
x Conv S4
0 = |- 1 8 - 1 Label map o Pyramid detail map
—_ 1 —_ 1 —_ 1 B8R Conv3x3+BN+RelLU @ Element-wise Sum O MSD Loss

Create multiscale detail maps Dy € RF*W | D, €
RT>*W and D, € RF*W performed by Laplace
convolution operators with varying strides from the
label map;

Use binary cross-entropy (BCE) loss with
category proportion-insensitive Dice loss
to evaluate the similarity of selected
feature maps F¢ and pyramid detail map P.

10

Obtain pyramid detail map P € RF*W by summing
multiscale details maps:
P - DO + D2 + D4_



Research Content and Technical Route

Hierarchical Semantic Enhancement (HSE)

First, given label map y € RF*W:

1. Set hierarchical semantic boundary.
Assume that N Dboundary levels and the
boundary level of n slice the label map in 2"
patches along the length and width, respectively.
The label patches are set as y,, € {v1, V2, ..., Yn }

where y,, = {Y,Ej)}ﬁ'; is the set of label patches
: () = pamXom.
in level n and y,,”” € R2"""2™;

2. Calculate the local frequency distribution.
The category distribution d,(,j) Is calculated

separately for each label patch y,ED, where j is

the sequence number of the label patch set;

3. Aggregate the global distribution vector.
The label patches at boundary level n are
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Distribution
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concatenated to generate the global
frequency distribution vector ¥,,. The HSE
vector of label map ? = {9,}N_,:;

4. Repeat step 1-3 for feature map F to
obtain global frequency distribution vector
vy, and its HSE vector v;

5. Use binary cross-entropy (BCE) loss to

evaluate the similarity of ¥ and v. 1



Research Content and Technical Route

S |
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® Potsdam '"’-‘"

ISPRS Website
5 cm spatial resolution bsM { -abel J nbsM J
Urban, 38 Patches, 6 Categories
® \/aihingen Da B
ISPRS Website
_ _ 5 DSM Label nDSM
9 cm spatial resolution [ } J

Village, 33 Patches, 6 Categories
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Experiment Results

Experiment Settings

Experimental Parameter Setting

® SGD is chosen as the optimizer, the total number of training times iterg is 80,000,
the initial learning rate lry is 0.001, and the learning rate Ir is updated using the

. ower
iter )p

"poly" training strategy, Ir = lry (1 — , where power is set to 0.9, the

batch size is 16.

iterg

Data Augmentation

Data Preprocessmg and Augmentatlon ® Multiscale Resizing: A scale number is randomly

Data Preprocessing

® Data Cropping: Crop the raw
Images to a size of 500x500 pixels
with a stride equal to half the size of
the cropped image;

® Discard images with lengths or
widths that are less than a quarter of
the cropped image size;

selected from 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0
for the height and width resizing.;

Random Cropping: Randomly select a 512x512
pixel block of data and crop it;

Random Flipping: Includes vertical flip and
horizontal flip;

Photometric Distortion: Randomly adjust the
brightness, contrast, saturation and hue levels of
the images;

Normalization: Adjust the data distribution to
conform to a normal distribution,

13



Experiment Results

Ablation Experiment

To quantify the role of the EAM, MSD and HSE modules, ablation
experiments were conducted on the ISPRS Potsdam dataset.

77.05 86.90
\ 78.17 87.60
\ 77.96 87.48

DSANet64
v 77.33 87.39
\ v 79.06 88.17
\ \ \ 79.20 88.25

DSANet64 obtained 78.17%, 77.96 % and 77.33% of mloUs using EAM, MSD and HSE
modules, respectively, which are 1.12%, 0.91% and 0.28% higher compared to DSANet64
backbone network, demonstrating the effectiveness of DSANet. 14



Experiment Results

Ablation Experiment

In order to qualitatively understand the role of the EAM, MSD and HSE
modules through visual representation, ablation experiments were conducted
on multiple different features selected from the ISPRS Potsdam dataset.

e Bl i
| siniabalal
.Emmu

GT DSANet6d +EAM +NMSD

DSANet64 can obtain better segmentatlon results than the backbone network using
EAM, MSD and HSE modules, respectively, and on balance, DSANet64 is effective. 15



Experiment Results

Comparison-Potsdam

Per-class mlIoU (%)

Method Imperious 1 Cow mloU (%) mF1 (%) Params (M)
Sgrface Building Vegetation Tree Car

FPENet [40] 76.55 86.30 65.56 66.48 67.16 72.41 83.64 0.11
FSSNet [37] 79.90 86.83 68.69 69.40 75.20 76.00 86.20 0.17
CGNet [66] 78.08 84.88 66.86 68.32 72.17 74.06 84.93 0.48
EDANet[35] 79.83 87.50 69.24 70.73 72.16 75.89 86.13 0.67
ContextNet [43] 79.37 86.86 68.70 69.38 71.96 75.25 85.71 0.86
LEDNet [41] 82.45 89.12 71.17 72.51 74.28 77.91 87.42 0.89
Fast-SCNN [37] 78.15 83.29 68.76 69.74 70.89 74.17 85.05 1.45
DSANet32 82.04 88.79 70.70 72.09 75.58 77.84 87.38 1.28
ESNet [67] 82.31 88.16 71.94 73.37 78.09 7877 88.00 1.66
DABNet [34] 81.30 88.23 70.95 73.24 73.20 77.38 87.10 1.96
ERFNet [36] 80.38 88.18 70.81 72.30 74.89 77.31 87.06 2.08
DDRNet23-slim [48] 81.27 89.09 69.91 72.37 72.99 77.13 86.91 5.81
STDCNet [38] 82.07 89.41 71.45 7349 76.78 78.64 87.90 8.57
LinkNet [39] 80.71 88.08 70.75 72.13 76.11 77.56 87.22 11.54
BiSeNetV1 [44] 81.91 88.95 71.83 73.21 80.18 79.22 88.27 13.42
BiSeNetV2 [45] 81.23 89.21 71.03 72.6 73.29 77.47 87.14 14.77
SFNet [47] 80.52 84.97 71.37 7292 79.94 77.94 87.51 13.31
DDRNet23 [48] 82.58 90.07 71.56 73.55 75.44 78.64 87.89 20.59
DSANet64 83.02 89.50 71.86 74.26 77.34 79.20 88.25 4.65

® DSANet32 and DSANet64 achieve better and suboptimal results for both small
and large model comparisons, with mloU of 77.84% and 79.20%, respectively.

® The segmentation results of most other efficient segmentation networks are
significantly lower than DSANet, which also validates the effectiveness of
DSANet.



Experiment Results

Comparison-Potsdam

(a) IRRG image, (b) GT, (c)
FPENet, (d) FSSNet, (e) CGNet, (f)
ContextNet, (g) Fast-SCNN, (h)
ERFNet, (i) STDC1, (j) LinkNet,
(k) ICNet34, (1) BiSeNet V1, (m)
SFNet, (n)DDRNet23, (0)
DSANet64.
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(a) IRRG image, (b) GT, (c)
FPENet, (d) ERFNet,
(e)DDRNet23-slim, (f) STDC1, (g)
BiSeNet V1, (h) BiSeNet V2, (i)
DSANet64. 17
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Experiment Results

Comparison-Vaihingen

Per-Class mIoU (%)

Method Imperious Surface Building Low Vegetation Tree Car mloU (%) mF1 (%)
FPENet [40] 78.37 84.24 63.44 73.79 44.39 68.85 80.67
FSSNet [37] 76.88 83.75 62.96 73.03 45.74 68.47 80.51
CGNet [67] 77.86 84.63 64.88 74.90 47.80 70.01 81.61
EDANet [35] 78.76 84.56 64.51 74.32 51.65 70.76 82.36

ContextNet [43] 77.77 83.65 61.99 7315 5032 69.38 81.31
LEDNet [41] 79.25 85.00 65.67 74.72 50.73 71.07 82.48
Fast-SCNN [37] 76.21 82.08 61.06 7147 44 .45 67.05 79.48
DSANet32 79.17 85.30 64.30 74.05 53.74 71.31 82.74
ESNet [68] 79.74 86.24 64.35 7447 53.77 71.71 82.99
DABNet [34] 78.48 84.42 63.92 73.90 54.16 70.98 82.55
ERFNet [36] 79.34 85.68 64.07 74.51 54.01 71.52 82.88
DDRNet23-slim [48] 78.81 84.53 64.55 73.96 52.92 70.95 82.49
STDC1 [38] 79.03 85.76 64.27 73.69 48.71 70.29 81.84
LinkNet [39] 79.94 85.94 64.60 74.29 54.32 71.82 83.09
BiSeNetV1 [44] 78.84 85.55 64.23 74.15 50.50 70.65 82.17
BiSeNetV2 [45] 79.14 84.91 64.26 74.09 55.59 71.60 83.00
DSANet64 79.50 85.98 63.86 73.60 58.35 72.26 83.49

® DSANet32 and DSANet64 achieve optimal results for both small and large
model comparisons, with mloU of 71.31% and 72.26%, respectively.

® The segmentation results of other efficient segmentation networks are
significantly lower than DSANet, which again validates the effectiveness of
DSANet.



Experiment Results

Comparison-Vaihingen

(a) IRRG image, (b) GT, (c)
FPENet, (d) FSSNet, (e) CGNet, (f)
ContextNet, (g) Fast-SCNN, (h)
ESNet, (i) ERFNet, (j) DDRNet23-
slim, (k) STDC1, (I)LinkNet, (m)
BiSeNet V1, (n) BiSeNet V2, (0)
DSANet64.
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(a) IRRG image, (b) GT, (c)
FPENet, (d) ERFNet,
(e)DDRNet23-slim, (f) STDC1, (g)
BiSeNet V1, (h) BiSeNet V2, (i)
DSANet64. 19
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Experiment Results

Inference Speed

Method mloU (%) FPS
512 1024 6000
FPENet [40] 72.41 173.47 73.13 2.44
FSSNet [37] 76.00 527.26 183.30 6.27
CGNet [67] 74.06 127.51 66.78 0.58
EDANet [35] 75.89 390.17 135.50 4.37
ContextNet [43] 75.25 688.70 257.25 8.59
LEDNet [41] 77.91 293.48 104.92 3.74
Fast-SCNN [37] 7417 670.82 261.43 8.60
DSANet32 77.84 648.49 245.66 8.78
ESNet [68] 78.77 295.33 100.27 2.77
DABNet [34] 77.38 173.47 73.13 2.44
ERFNet [36] 77.31 282.66 96.00 2.65
DDRNet23-slim [48] 77.13 429.09 208.38 6.98
STDC1 [38] 78.64 437.41 147.07 5.00
BiSeNetV1 [44] 79.22 351.89 128.64 3.92
BiSeNetV2 [45] 7747 24227 114.15 3.87
DDRNet23 [48] 78.64 256.65 99.58 3.46
DSANet64 79.20 470.07 172.16 5.46

® DSANet32 achieves the optimal inference speed of 8.78 FPS on large images
and DSANet64 achieves the optimal inference speed of 470.07 FPS on small
Images, in addition, DSANet has better inference speed on data of different
scales.



Experiment Results

Conclusion

Lightweight DSANet is proposed for semantic segmentation of remote sensing
Images. DSANet better balances the contradiction between the operation efficiency

and accuracy;

Using multiscale spatial detail enhancement and hierarchical semantic
enhancement modules to effectively enhance the model's ability to extract detailed

and semantic information without sacrificing inference speed;

A simple embedding attention module (EAM) with linear complexity performs

long-range relationship modeling;

DSANet still has room for optimization in terms of operational efficiency and
accuracy, such as the use of knowledge distillation, structural re-parameterization

and model pruning.

21
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Research Background

Pansharpening is a technique used in remote sensing and image processing to
obtain the high-spatial-resolution (HR) multispectral (MS) images by fusing HR

panchromatic (PAN) images and lower-spatial-resolution (LR) MS images.

HRMS = Fy(LRMS, PAN)

i Pansharpening
Framework

H' — B
LRMS € R+*+*C x

|
|
|
|
|
|
]
|
|
|
|
|
: IMS < RHXWXC
]
]
]
]
]
]
]
|
|
|
|
|

| > HRMS € RHT*WxC
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Research Background

Traditional Pansharpening

Researcher

List of research contents

Laben, and Bernard. (2000)
CS. Gram-Schmidt

Shahdoosti, and Hassan. (2016)
CS. PCA

Otazu, Gonzdez-Aud £ana, et al.

(2005) MRA.AWLP

Aiazzi, Alparone, et al. (2006)
MRA. MTF-GLP

Ballester, Vicent, et al. (2006)

VO. P+XS

Li, and Yang. (2010)
VO. Sparse Representation

Perform a Gram-Schmidt transformation on the simulated lower spatial
resolution panchromatic image and the plurality of lower spatial resolution
spectral band images.

Propose a new consistent data transformation method in spatial domain, this
paper applies the PCA transform to the spatial information of the neighboring
pixels.

Present a technique which takes into account the physical electromagnetic
spectrum responses of sensors during the fusion process, which produces
images closer to the image obtained by the ideal sensor than those obtained by
usual wavelet-based image fusion methods.

A model of the modulation transfer functions (MTF) of the multispectral
scanner is exploited to design the GLP reduction filter.

Based on the assumption that, to a large extent, the geometry of the spectral
channels is contained in the topographic map of its panchromatic image.

Address the remote sensing image pan-sharpening problem from the

perspective of compressed sensing theory which ensures that with the sparsity
regularization, a compressible signal can be correctly recovered from the global
linear sampled data.




Research Background

DL-based Pansharpening

Researcher List of research contents

A new pansharpening method is proposed, based on convolutional neural
networks. We adapt a simple and effective three-layer architecture recently
proposed for super-resolution to the pansharpening problem.

Masi, Cozzolino, et al. (2016)
PNN

Propose a deep network architecture for the pan-sharpening problem called
PanNet. We incorporate domain-specific knowledge to design our PanNet
architecture by focusing on the two aims of the pan-sharpening problem:
spectral and spatial preservation.

Yang, Fu, etal. (2017) PanNet

The concept of residual learning is introduced to form a very deep
convolutional neural network to make the full use of the high nonlinearity of
the deep learning models.

Wei, Yuan, etal. (2017)
DRPNN

Propose a Two-stream Fusion Network (TFNet) to address the problem of pan-
Liu, Liu, etal. (2020) TFNet  sharpening. ...the proposed TFNet aims to fuse PAN and MS images in feature
domain and reconstruct the pan-sharpened image from the fused features.

Meng, Wang, et al. (2022) Propose an improved and advanced purely transformer-based model for
Vision Transformer pansharpening.

Propose a novel unsupervised framework for pan-sharpening based on a
generative adversarial network, termed as Pan-GAN, which does not rely on
the so-called ground-truth during network training. 25

Ma, Yu, et al. (2020)
PanGan




Research Background

Existing Problems

(a) Component Substitution (CS)-based Method
» High spatial quality, Low spectral fidelity

(b) Multiresolution Analysis (MRA)-based Method Limited by strong

hysical tion!
» High spectral fidelity, Low spatial quality prysical assumption

(¢) Variational Optimization (VO)-based Method
» Computationally costly

» Underlying assumptions not always match the fusion situation

(d) Deep Learning (DL)-based Method:
» CNN: Tend to smooth features

» Transformer: Need large dataset for model training
» GAN: Unstable training

It is urgent to establish a new pansharpening method to
avoid above problems. 26




Content and Technical Route

A novel denoising diffusion probabilistic model (DDPM)-based pansharpening model
(PanDiff) is proposed from a fresh perspective to avoid the inherent flaws of the

traditional and DL-based approaches.

Contributions

1) PanDiff is a generative model based on the DDPM which is first designed for pansharpening;

2) PanDiff changes the learning objective of the traditional fusion networks. It decomposes the
complex fusion process of PAN and LRMS images into a multi-step Markov process, and
actually learns the data distribution of the difference map (DM) of HRMS and interpolated

MS (IMS), rather than the spatial gnd spectral infowljmation of HRMS; |




Content and Technical Route

Framework

N |
1 Ne'er‘:v,::-k pe(X:-11x:,cond)

~ MIM  Time Embedding

L/

........
44444

q(xlx-1)
- Forward Step ==_>  Reverse Step @ Sommriation
Notations |
1. q(:I-) : Forward (Diffusion) step PanDiff:
2. po(:l-) : Reverse (Denoised) step with network @ 1. DDPM: Forward Step
3. t : Discrete timesteps t on the range of [0, T] 2. DDPM: Reverse Step

4. xq : Prior distribution of data GT — IMS .- ..
0 3. Condition Injection Branch

5. x; . Diffused data (latent state) at step t

: o 4. Modal Intercalibration
6. x7 : Random noise after diffusion 28



Content and Technical Route

DDPM: Forward Process

Given prior data distribution q(xy);

Continuously adding Gaussian noise to latent states x; on Markov chain:

q(x;|lxe—1) =N (xt;\/ 1- ﬁtxt—l:\/El) (1)
where f; represents the variance of the added Gaussian noise in the transition process
from x,_ to x;, and all the variance schedule B4, ..., B7 € [0, 1);

Obtain an approximate standard normal distribution xy ~ N(0,I) after continuously
Gaussian transition q(x; | x¢—1);

The forward diffusion process is given by the approximate posterior:
T

q(xy.7 1 x9) = l—[CI(xt | x¢—1) (2)

t=1
The latent state x; at any arbitrary timestep t can be derived based on x¢ and g;:

q(x; | xo) = N(xt; \/&_txo,,/l — &tl)(S)
t
a=|[a-s)@
i=1

29



Content and Technical Route

DDPM: Reverse Process

Purpose: Recreate a sample in the specific data distribution gq(xo) from sampling
Gaussian noise x;.

q(xs | x,—1) = q(x—1 | x;,)  Hard to Estimate!

Solution: use a U-Net 0 to approximate these conditional probabilities by fitting the mean
and variance.

The reverse Gaussian transition:
Po(Xe—q | x¢) = N(xt—1i ﬂe(xt» t);ze(xt: t))(5)
Substituting (1) and (3) into the conditional probability q(x;._1 | x¢x0) ~

N(xe_1; @ (xe, x0), Bel), the mean fi,(x., x,) and variance j; can be parameterized with
Bayes’ rule:

. 1 1 - at
.ut(xt'xO) = \/_a—t(xt _\/ﬁet> (6) Ay = 1 - 'Bt
- Ut
~ 1—a;_
Be= =g e
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Content and Technical Route

DDPM: Optimization

Optimization Objective: Recreate a sampling distribution gq(%,) close to the prior data
distribution gq(x¢), which can be achieved by minimizing the negative log-likelihood
(NLL) and optimized by using the variational lower bound:

—log pg (x0) < —logpe (x0)
+ Dir(q(zi.7 | zo)llpe(z1.7 | z0))

_ q (x1:7 | X0)
=Fa [log pe(zo.T) ]

po (xe—1 | xt)
=Eq —IOEP(XT)—E logﬁ
t>1 g Xt | X¢—1

= Eq[PKL (g (z7 | =o) Ip (ﬁT)l (8)

v

L

+ Z:DKL (¢ (zt—1 | z¢,20) |Ipo (x1—1 | 2¢))

t>1 ~
Ly 1

—log pg (zo | x1)]

Ly

where L and L, are fixed values after the data distribution x, and the noise scheme g are
determined. The parameterized L,_; can be calculated by substituting the mean and
variance of the q(x;_1 | x¢,x0) and pg(xs—1 | x¢):

1
Ly 1 =Ex,e 252 ”ﬂt(xt: xo) — po(x, t)”z (9)
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Content and Technical Route

Model Design

Questions:

€ How to destroy HRMS with rich spatial and spectral information into

approximate Gaussian noise x4 in limited timesteps?

€ How to guide the random Gaussian noise x; simulate the process of

HRMS reconstruction with high uncertainty?

\ 4
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Content and Technical Route

Difference Map

Two Considerations:

& Effectively alleviate the difficulty of the work that converting the HRMS into a Gaussian

noise and reconstructing it by reversion in a limited number of timesteps.

€ The fusion objective of PanDiff is more clearly defined, which undoubtedly leads to better

=
HRMS
HRMS = Fy(LRMS, PAN)
TN

performance of the model.

AMS = Fy(LRMS,PAN) FENENGEE
/17\ ; 2\ \/
-\
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Content and Technical Route

Condition Injection

Using PAN and LRMS images as condition injections to control the reverse process

of reconstructing:

T
Po (xO:T) = P(xT) Hpe(xt—1 | x¢,cond ) (10)
t=1
cond = ®(PAN,LRMS)(11)

where ®(-) is the encoder branch for processing PAN and LRMS images as the

Injected condition

[
~
L —
-
L —
-
-

~~~~~

C—— > | Encoder

-
-
-
-
-
-
-
-
=




Content and Technical Route

Significant modal differences exist between PAN and LRMS images, allowing PAN

and LRMS images to guide the modeling of q(x;_; | x;) in neural networks by

focusing on various aspects.

» MIM-Spectral

1. Averaging & Max global
pooling via channel dimension

2. Multi layer perceptron (MLP)
Multiply the weights

» MIM-Spatial

1. Averaging & Max global
pooling in channel dimension
2. Convlxl
MLP

Multiply the weights




Content and Technical Route

Algorithms

Algorithm 1: Training Algorithm for PanDiff.

Input: Pansharpening dataset D = {(P;, MS;, GTZ-)}?T:T
repeat
Sample (Pq;, MSV;, GTZ) ~D
t ~ Uniform({1,...,T})
e~N(0,I)
MS,; = Interpolate(MS;)
rog — AMSZ = GT1 - MSZ
cond = ® (P;, MS;)
Take gradient descent step on
Ve He —€g (\/amo + V1 — aze, cond, t) H2

o until converged,

[T B N R T S

Algorithm 2: Sampling Algorithm for PanDiff.

Input: Pansharpening data D; = (P;, MS;, GT;) ~ D,
Neural Network €g.

Output: MS;
1 x ~ N(O,I)
2 fort < T to 1 do
3 z~N(0,T)if t>1,else z =10
4 cond = ¢ (P;, MS;)
5 Ti—1 = \/%T (mt — \}%69 (z¢, cond, t)) + otz
¢ end
7 MS; = x0 + MS;
8 return MS;




Experiment Results

The PanCollection dataset containing data from four satellites (GaoFen-2,

QuickBird, WorldView-3, and WorldView-2) is utilized to evaluate PanDiff

with other state-of-the-art methods fairly and comprehensively.

Satellite GaoFen-2 QuickBird WorldView-3 WorldView-2
Band 4 4 8 8
PA . . . 4
Spatial Resolution (m) N 0.8 0.6 0.3 V.46
MS 3.2 2.4 1.2 1.84
Radiometric Resolution (bit) 10 11 11 11
Spatial Resolution Ratio 4 4 4 4
Train/ Val 19809 /2201 17139/1905 9714/1080 -/20
. PAN 64 x 64 x 1 64 X 64 x 1 64 X 64 x 1 512 x 512 x 1
Image Size
MS 16 X 16 x 4 16 x 16 x 4 16 x 16 x 8 128 x 128 x 8
. . . . Rio, Brazil ;
Location Guangzhou, China Indianapolis, USA Washington, D.C., USA

Tripoli, Lebanon
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Experiment Results

Experiment Details

Benchmark

CS-based Methods: BT-H, and BDSD-PC

MRA-based Methods: MTF-GLP-FS, and MTF-GLP-HPM-R
DL-based Methods:
» CNN: PNN, PanNet, DRPNN, MSDCNN, DIiCNN, SSconv, and TDNet

» GAN: PSGAN, and MDSSC-GAN

Evaluation Metric

Reduced Resolution: PSNR, SSIM, SAM, ERGAS, and SCC

Full Resolution: Dg, Dygmbdaa: @NR and HONR
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Experiment Results

Experiment Settings

Experimental Parameter Setting

® AdamW is chosen as the optimizer, the total number of training times iter is
320,000, the initial learning rate Iry is 0.0001, and the learning rate Ir is updated
using the MultiStep learning rate scheduler, the batch size is 384.

Data Preprocessing and Augmentation

Data Preprocessing Data Augmentation

® Data Normalization: both the input  ® Random Flipping: Includes vertical flip
and output of DDPM need to be and horizontal flip;
approximated as standard Gaussian @ Random Rotation: Includes 90°, 180,
distributions. and 270 rotations.

, d
d' = 2%~ 1(12)
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Experiment Results

Reduced Resolution

Methods PSNR 1 (+std) SSIM 1 (+std) SAM | (+std) ERGAS | (+std) SCC 1 (+std)
BT-H [51] 35.7741.35 0.9260£0.0034 1.8485£0.0772 1.74520.0677 0.8633:£0.0184
BDSD-PC [52] 35.2741.49 0.9206:£0.0029 1.9638£0.0740 1.9046:£0.0760 0.8634:£0.0202
MTF-GLP-FS [17] 35.94+1.34 0.9206::0.0020 1.7617£0.0512 1.7342£0.0529 0.8581-£0.0234
MTF-GLP-HPM-R [18] 35.96+1.32 0.921540.0021 1.7530+0.0514 1.7301+£0.0496 0.8598+0.0242
PNN [28] 39.8140.86 0.9668:0.0033 1.1385£0.0718 1.0474:£0.0622 0.9479-£0.0059
PanNet [29] 39.68+0.83 0.9663£0.0033 1.2009£0.0736 10656::0.0628 0.9480-£0.0059
DRPNN [30] 40.480.86 0.9711£0.0029 1.0873£0.0681 0.9714:£0.0581 0.9548-£0.0053
MSDCNN [53] 40.4620.90 0.9705:0.0029 1.0741:0.0688 0.9789-£0.0596 0.9537-£0.0054
DiCNN [54] 39.81+0.91 0.9676+0.0033 1.127740.0696 1.05594:0.0630 0.9491+0.0058
SSconv [55] 4090091 0.9726:£0.0027 1.0193£0.0656 0.9339+£0.0579 0.9571£0.0050
TDNet [56] 39.7240.87 0.9668-£0.0033 1.2147£0.0764 10649-£0.0633 0.9491-£0.0058
PSGAN [39] 4177081 0.9795:0.0021 0.9443£0.0564 0.8279+:0.0412 0.9684-£0.0045
MDSSC-GAN [66] 42554092 0.9818£0.0018  0.8295+0.0530 0.7623:0.0447 0.9722::0.0032
PanDiff 43.40£0.64 0.9837£0.0013  0.7735£0.0367 0.6875-£0.0307 0.9771:£0.0022

(a)BH-T

(h)MSDCNN

(b)BDSD-PC

(i)DICNN

(C)MTE-GLP-
Fs

(j)SSconv

(d)MTF-GLP-

HPM-R (e)PNN

(K)TDNet

()PSGAN

(f)PanNet

(m)MDSSC-
GAN

140

120

- 100

- 80

(9)DRPNN

- 60

40

20

(n)PanDiff
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Experiment Results

Reduced Resolution

Methods PSNR 1 (+std) SSIM 1 (+std) SAM | (+std) ERGAS | (+std) SCC 1 (£std)
BT-H [51] 35.6140.90 0.8940+0.0058 6.370040.3679 7.039641.3166 0.810940.1796
BDSD-PC [52] 35.95+0.60 0.89570.0045 6.7232+0.3074 6.3606+0.0745 0.8979+0.0032
MTF-GLP-FS [17] 36.12+0.64 0.89670.0055 6.4589+0.3403 6.2240+0.0841 0.897540.0035
MTF-GLP-HPM-R (18] 36.12+0.65 0.8985+0.0059 6.4546+0.3811 6.714141.0089 0.865040.0070
PNN [28] 37.69+0.82 0.9289+0.0057 5.157740.2658 5.3945+0.3255 0.941140.0105
PanNet [29] 37.924+0.85 0.932140.0069 5.060440.2593 5.254540.3729 0.951140.0090
DRPNN [30] 39.314+0.73 0.94940.0051 4.5977+0.2165 4.4963+0.3218 0.966140.0066
MSDCNN [53] 38.62+0.78 0.9410+0.0054 4.8659+0.2411 4.8606+0.3183 0.9560+0.0083
DIiCNN [54] 37.55+0.88 0.92660.0060 5.152840.2750 54922403181 0.937040.0104
SSconv [55] 38.85+0.78 0.943340.0059 47277402329 4.782840.3686 0.962740.0076
TDNet [56] 37.50+0.85 0.9266+0.0065 5.208540.2707 5.528940.3581 0.945140.0096
PSGAN [39] 40.0740.75 0.956540.0047 4.2570+0.2025 41415403126 0.97180.0058
MDSSC-GAN [66] 40.01£0.76 0.9557+0.0049 4.2450+0.1998 41772503145 0.9710+0.0058
PanDiff 41.70-£0.73 0.9569+0.0073 4.3193+0.2553 3.7824+0.3526 0.9725+0.0067

(a)BH-T

PAN

(b)BDSD-PC

(i)DICNN

(c)MTF _GLP-
HPM-R

(j)SSconv (k)TDNet

(d)MTF-GLP-

(e)PNN

(I)PSGAN

(fPanNet

~ .......

(h)MSDCNN

(m)MDSSC-

400

- 300

(9)DRPNN
- 200

100

(n)PanDiff
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Experiment Results

Full Resolution

Methods Dy | (£std) Dg | (£std) QNR*1 (£std) HQNR1 (Lstd)
BT-H [51] 0.0891+0.0335  0.171240.0388  0.7399+0.0551 0.7558+0.0567
BDSD-PC [52] 0.0926+0.0292  0.165240.0362  0.7767+0.0539 0.7582+0.0509
MTF-GLP-FS [17] 0.0370+0.0138  0.15394+0.0351  0.7636-£0.0542 0.81500.0404
MTF-GLP-HPM-R [18]  0.0364£0.0131  0.1531+0.0353  0.7650+0.0545 0.81630.0400
PNN [28] 0.0490+0.0693  0.126340.0338  0.8256-0.0194 0.82360.0564
PanNet [29] 0.0353+0.0105  0.103540.0258  0.8494-0.0409 0.8649+0.0271
DRPNN [30] 0.0374+0.0148  0.11154+0.0321  0.8265+0.0519 0.8555+0.0390
MSDCNN [53] 0.0298+0.0118  0.0869+0.0194  0.8729+0.0323 0.8859-+0.0202
DiCNN [54] 0.0329+0.0098  0.092140.0248  0.8580-+0.0394 0.8781+0.0273
SScony [55] 0.0228+0.0084  0.047840.0156  0.9232+0.0274 0.9304+0.0146
TDNet [56] 0.0301+£0.0096  0.0839+0.0202  0.8786+0.0324 0.8885+0.0201
PanDiff 0.0223+0.0103  0.032340.0131  0.9396-+0.0250 0.9461-+0.0125

(i)DICNN

(j)SSconv

(K)TDNet

(m)PanDiff
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Experiment Results

Full Resolution

Methods Da L (dstd) Ds | (£std) QNR* (£std) HQNR 1 (tstd)
BT-H [51] 0.2788+0.1323  0.1835+0.0861  0.76014-0.0937 0.596540.1535
BDSD-PC [52] 0.224540.0588  0.1789:£0.1051  0.7806-0.1227 0.642040.1222
MTF-GLP-FS [17] 0.0674-0.0295  0.1708-£0.0783  0.7634-0.0899 0.7751-£0.0903
MTF-GLP-HPM-R [18]  0.071940.0353  0.1558:0.0800  0.7841-£0.0928 0.7851-£0.0922
PNN [28] 0.0992+0.0480  0.1205+0.0981  0.8129--0.1330 0.7961-0.1223
PanNet [29] 0.14754+0.0796  0.1224:£0.0956  0.7993-0.1424 0.7545-£0.1391
DRPNN [30] 0.0934+0.0463  0.0933+0.0644  0.8386-0.1164 0.8244-0.0927
MSDCNN [53] 0.0841+0.0406  0.1004+0.0862  0.8284=0.1270 0.82700.1094
DiCNN [54] 0.1085+£0.0330  0.1381+0.0984  0.804940.1311 0.7711£0.1114

SSconv [55]
TDNet [56]
PanDiff

0.1180£0.0711
0.2210£0.1042

0.070640.0379

0.1036+0.0804
0.15314+0.1055
0.065710.0480

0.811240.1305
0.770040.1491
0.885540.0877

0.7955+0.1244
0.6688+0.1553
0.8697+0.0745

(dMTF-GLP-
“HPM-R

(i)DICNN (i)SSconv (K)TDNet

(m)PanDiff



Experiment Results

Full Resolution

Methods

Dy | (Estd)

Ds | (£std)

QNR 1 (Lstd)

HQNR 1 (+std)

BT-H [51]
BDSD-PC [52]
MTF-GLP-FS [17]
MTF-GLP-HPM-R [18]
PNN [28]

PanNet [29]
DRPNN [30]
MSDCNN [53]
DiCNN [54]
SSconv [55]
TDNet [56]
PanDiff

0.185140.1848
0.150540.1204
0.0631+0.0579
0.063540.0575
0.1160+0.1086
0.1862+0.1886
0.115740.1163
0.1105+0.1119
0.102340.0977
0.20214£0.2147
0.2116+0.2183
0.0982£0.1096

0.1493£0.0937
0.1464£0.1159
0.139040.1191
0.1370£0.1179
0.0667£0.0210

0.7568+0.1678
0.7901£0.1713
0.783340.1781
0.7870£0.1752
0.8374£0.1184

0.072140.0263
0.0903£0.0712
0.0761£0.0466
0.072440.0435
0.0925£0.0592
0.1043£0.0950
0.0537+0.0467

0.8292+0.1023
0.8086£0.1498
0.8341£0.1297
0.837340.1307
0.8021£0.1386
0.7961£0.1627
0.9091+0.0742

0.708040.2157
0.737540.1860
0.81264+0.1524
0.813940.1507
0.826240.1121
0.757940.1849
0.810740.1528
0.825840.1350
0.8356::0.1196
0.735040.2268
0.722240.2401
0.857140.1336

h)MSDCNN

(m)PanDiff
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Experiment Results

Generalization Test

Using WorldView-2 images to perform cross-sensor, cross-resolution

generalization experiments on the model trained with WorldView-3 data.

PanDiff shows high robustness with excellent spectral retention and spatial

enhancement capabilities.

(e)DICNN (f)SSconv
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Experiment Results

Ablation Study

Effectiveness of Difference Map

In the reduced resolution experiments, the results are as expected; because more data
information must be reconstructed, not using the DM decreases performance by 0.93, 0.0028,
0.0922, and 0.0589 for PSNR, SSIM, SAM, and ERGAS, respectively. However, omitting the
DM sharply degrades the model’s capacity to retain spectral information for full-resolution

Images, although the difference in spatial detail retention ability is insignificant.

Effectiveness of MIM

PanDiff without MIM-Spectral has a considerable reduction in the spectral metrics
SAM and D,, 0.0698 and 0.0081, respectively; PanDiff with missing MIM-Spatial has a
reduction in the spatial structure metrics SSIM and Dg , 0.0042 and 0.0071, respectively.

DM  MIMgpectral MIMgpapiar | PSNR T (£std)  SSIM 1 (dstd)  SAM | (£std) ERGAS | (kstd) Dy | (kstd) Dgl (tstd) QNRT (dstd)
x X X 41.88+1.13 0.976240.0024 0.96254-0.0681 0.87660.0547 0.27874-0.0824 0.036840.0191 0.87894-0.0451
x v v 42.4740.92 0.980940.0022 0.865740.0579 0.746440.0483 0.257440.0785 0.032540.0177 0.885940.0437
v X v 42.8540.76 0.98290.0016 0843300438 0.717340.0409 0.030440.0119 0.0336£0.0136 0.926940.0317
v v X 42784081 0.979540.0036 0.8133£0.0342 0.717540.0422 0.02484-0.0107 0.03940.0157 0.930540.0301
v v v | 43.404-0.64 0.983740.0013 0.773540.0367 0.687540.0307 0.0223+0.0103 0.032340.0131 0.9396+0.0250




Experiment Results

Conclusion

PanDiff is a generative model based on the DDPM which is first designed for
pansharpening;

PanDiff changes the learning objective of the traditional fusion networks. It
decomposes the complex fusion process of PAN and LRMS images into a multi-step
Markov process, and actually learns the data distribution of the difference map
(DM) of HRMS and interpolated MS (IMS), rather than the spatial and spectral
information of HRMS ;

PanDiff no longer treats the input PAN and MS as the object of feature extraction,
it injects the PAN and MS images intercalibrated by a modal intercalibration
module (MIM) as conditions to guide the U-Net to learn the data distribution of the
DM of HRMS and IMS ;

Comparisons between PanDiff with other state-of-the-art methods on GaoFen-2,
QuickBird, and WorldView-3 data show the significant effectiveness and superiority
of PanDiff.
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